个人简介
一、基本情况
张冀,1988年6月出生,副教授,博士生导师,欧盟玛丽居里学者,湖南省“人才计划”入选者。2016年至2020年期间,在在丹麦技术大学从事博士后研究工作。主要研究方向是可再生能源高效发电技术;发表SCI/EI高水平学术论文20余篇;获北京市科学技术一等奖1项;主持欧盟和丹麦科研项目3项。
联系电话:18871599998(微信同号) 联系邮箱:jizhang@hnu.edu.cn
常年招收硕士、博士和博士后,欢迎各位学生提前联系、咨询、报考!
二、研究方向
1. 高效热力循环发电系统
2. 新能源发电强化换热设备
3. 电力电子系统和器件散热技术
三、代表性论文
[1] J. Zhang, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers, Int. J. Heat Mass Transf. 164 (2021) 120577.
[2] J. Zhang*, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop correlations in plate heat exchangers for heat pump and organic Rankine cycle systems, Appl. Therm. Eng. 183 (2021) 116231.
[3] T. Zhu, J. Zhang*, A numerical study on performance optimization of a micro-heat pipe arrays-based solar air heater, Energy. 215 (2021) 119047.
[4] J. Zhang*, M.E. Mondejar, F. Haglind, General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes, Appl. Therm. Eng. 150 (2019) 824–839.
[5] J. Zhang*, M.R. K?rn, T. Ommen, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger, Int. J. Heat Mass Transf. 128 (2019) 136–149.
[6] J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renew. Sustain. Energy Rev. 101 (2019) 305–328. https://doi.org/10.1016/j.rser.2018.11.017.
[7] J. Zhang*, A. Desideri, M.R. K?rn, T.S. Ommen, J. Wronski, F. Haglind, Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units, Int. J. Heat Mass Transf. 108 (2017) 1787–1801.
[8] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques, Exp. Therm. Fluid Sci. 81 (2017) 21–32.
[9] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Thermal-hydraulic performance of SiC-Water and Al2O3-water nanofluids in the minichannel, J. Heat Transfer. 138 (2016) 1–9.
[10] J. Zhang, Y. Zhao, Y. Diao, Y. Zhang, An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures, Int. J. Heat Mass Transf. 84 (2015) 511–520. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.049.
[11] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Experimental study of TiO2-water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube, Int. J. Heat Mass Transf. 79 (2014) 628–638.
[12] J. Zhang, Y.H. Diao, Y.H. Zhao, Y.N. Zhang, An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube, Appl. Therm. Eng. 65 (2014) 209–218.
[13] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Q. Sun, Thermal-hydraulic performance of multiport microchannel flat tube with a sawtooth fin structure, Int. J. Therm. Sci. 84 (2014) 175–183.
[14] J. Zhang, Y.H. Diao, Y.H. Zhao, X. Tang, W.J. Yu, S. Wang, Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid, Energy Convers. Manag. 75 (2013) 609–616.